9/7/09

Combination of mid- and near-infrared spectroscopy for the [An article from: Analytica Chimica Acta]



About Combination of mid- and near-infrared spectroscopy for the [An article from: Analytica Chimica Acta] detail

  • Published on: 2006-07-07
  • Format: HTML
  • Binding: Digital
  • 7 pages

Combination of mid- and near-infrared spectroscopy for the [An article from: Analytica Chimica Acta] Description

This digital document is a journal article from Analytica Chimica Acta, published by Elsevier in 2006. The article is delivered in HTML format and is available in your Amazon.com Media Library immediately after purchase. You can view it with any web browser.

Description:
The combination of infrared (MIR) and near-infrared (NIR) spectroscopy has been employed for the determination of important quality parameters of beers, such as original and real extract and alcohol content. A population of 43 samples obtained from the Spanish market and including different types of beer, was evaluated. For each technique, spectra were obtained in triplicate. In the case of NIR a 1mm pathlength quartz flow cell was used, whereas attenuated total reflectance measurements were used in MIR. Cluster hierarchical analysis was employed to select calibration and validation data sets. The calibration set was composed of 15 samples, thus leaving 28 for validation. A critical evaluation of the prediction capability of multivariate methods established from the combination of NIR and MIR spectra was made. Partial least squares (PLS) and artificial neural networks (ANN) were evaluated for the treatment of data obtained in each individual technique and the combination of both. Different parameters of each methodology were optimized. A slightly better predictive performance was obtained for NIR-MIR combined spectra, and in all the cases ANN performs better than PLS, which may be interpreted from the existence of some non-linearity in the data. The root-mean-sqare-error of prediction (RMSEP) values obtained for the combined NIR-MIR spectra for the determination of real extract, original extract and ethanol were 0.076% w/w, 0.14% w/w and 0.091% v/v.

Google
 

Relate Post