9/4/09

Determination of low analyte concentrations by near-infrared spectroscopy: Effect of spectral pretreatments and estimation of multivariate detection



About Determination of low analyte concentrations by near-infrared spectroscopy: Effect of spectral pretreatments and estimation of multivariate detection limits [An article from: Analytica Chimica Acta] detail

  • Published on: 2007-01-09
  • Format: HTML
  • Binding: Digital

Determination of low analyte concentrations by near-infrared spectroscopy: Effect of spectral pretreatments and estimation of multivariate detection limits [An article from: Analytica Chimica Acta] Description

This digital document is a journal article from Analytica Chimica Acta, published by Elsevier in 2007. The article is delivered in HTML format and is available in your Amazon.com Media Library immediately after purchase. You can view it with any web browser.

Description:
Near infrared spectroscopy (NIRS) was used in combination with partial least squares (PLS) calibration to determine low concentrated analytes. The effect of the orthogonal signal correction (OSC) and net analyte signal (NAS) pretreatments on the models obtained at concentrations of analyte near its detection limit was studied. Both pretreatments were found to accurately resolve the analyte signal and allow the construction of PLS models from a reduced number of factors; however, they provided no substantial advantage in terms of %RSE for the prediction samples. Multiple methodologies for the estimation of detection limits could be found in the bibliography. Nevertheless, detection limits were determined by a multivariate method based on the sample-specific standard error for PLS regression, and compared with the univariate method endorsed by ISO 11483. The two methods gave similar results, both being effective for the intended purpose of estimating detection limits for PLS models. Although OSC and NAS allow isolating the analyte signal from the matrix signal, they provide no substantial improvement in terms of detection limits. The proposed method was used to the determine 2-ethylhexanol at concentrations from 20 to 1600ppm in an industrial ester. The detection limit obtained, round 100ppm, testifies to the ability of NIR spectroscopy to detect low concentrated analytes.



Google
 

Relate Post